(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

+(X, 0) → X
+(X, s(Y)) → s(+(X, Y))
double(X) → +(X, X)
f(0, s(0), X) → f(X, double(X), X)
g(X, Y) → X
g(X, Y) → Y

Rewrite Strategy: FULL

(1) CpxTrsToCpxRelTrsProof (BOTH BOUNDS(ID, ID) transformation)

Transformed TRS to relative TRS where S is empty.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

+(X, 0) → X
+(X, s(Y)) → s(+(X, Y))
double(X) → +(X, X)
f(0, s(0), X) → f(X, double(X), X)
g(X, Y) → X
g(X, Y) → Y

S is empty.
Rewrite Strategy: FULL

(3) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
+(X, s(Y)) →+ s(+(X, Y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [Y / s(Y)].
The result substitution is [ ].

(4) BOUNDS(n^1, INF)